
Draft Genome Sequence of Bacillus sp. Strain EKM601B
(Phylum Firmicutes), Living inside the Seeds of Luffa
acutangula (Chinese Okra)

Eman M. Khalaf,a,b Manish N. Raizadaa

aDepartment of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
bDepartment of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt

ABSTRACT Presented here is the draft genome sequence of Bacillus sp. strain
EKM601B, which contains 4,199,360 bp in 73 contigs. This candidate endophyte was
isolated from surface-sterilized dry seeds of Luffa acutangula (Chinese okra) and
demonstrated diverse plant-beneficial functions and antagonism against soilborne
pathogens in vitro.

Seed-associated endophytic bacteria may be vectors for beneficial founder microbes
that establish the plant microbiome (1). Many strains of the genus Bacillus are

marketed as biofertilizers or biocontrol agents. They promote plant growth either
directly via nutrient acquisition (2) or indirectly through antibiosis, competition, and
induction of host defense responses (3). The seed microbiota of cucurbits (including
cucumber, melons, pumpkin, squash, and luffa) were previously cultivated and exten-
sively phenotyped, and Bacillus was the dominant genus (4, 5). The endophytic candi-
date Bacillus sp. strain EKM601B (GenBank accession number KT281323) was isolated
from surface-sterilized seeds of Luffa acutangula (Chinese okra) in 2014 (4). The strain
exhibited diverse in vitro growth-promoting functions, including growth on nitrogen-
free medium and secretion of extracellular enzymes (pectinase, protease, and RNase)
(4). Furthermore, this candidate endophyte displayed in vitro biocontrol activities via
emission of volatile organic compounds (VOCs) (acetoin and diacetyl production)
known to induce plant defenses and suppression of the soilborne fungal pathogen
Rhizoctonia solani and the oomycete pathogen Phytophthora capsici (5).

Bacterial genomic DNA was isolated from an overnight LB broth culture (37°C,
250 rpm), which had been inoculated from a single colony streaked onto LB agar from
the original glycerol stock, by using a DNeasy UltraClean microbial kit (Qiagen product
number 12224-50) and then was adjusted to 50 ng/�l. DNA libraries were prepared
using a TruSeq DNA Nano library preparation kit (KAPA HyperPrep kit, product number
KK8504). The Illumina NovaSeq 6000 platform was used for sequencing, which gener-
ated 1,594,540 raw reads with an average length of 150 bp (paired end) with 97-fold
coverage, compared to the top genome match in the database (Bacillus velezensis strain
QST713; GenBank accession number CP025079.1) (6), as determined using KmerFinder
v3.1 (7) with 99.85% query coverage. Using the EvoCAT (Evogene Clustering and
Assembly Toolbox) pipeline, a total of 1,370,507 reads remained after trimming of
low-quality sequences using a threshold score of 30. De novo assembly using EvoCAT
resulted in 73 contigs (minimum scaffold length, 203 bp; maximum length, 644,951 bp;
N50, 293,409 bp). The assembled genome is 4,199,360 bp, with a GC content of 47%.
Prodigal software (8) was used for protein prediction; predicted proteins were sub-
jected to searches against the NCBI nonredundant protein database using BLASTp (9).
Protein domains were identified using InterProScan v5.32-71.0 software (10). Default
parameters were used for all software unless otherwise specified.
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The Bacillus sp. strain EKM601B genome is predicted to encode a minimum of 3,736
proteins. The genome annotation was consistent with the phenotypic traits expressed
in vitro (4, 5), revealing candidate genes underlying the use of Bacillus species as
biofertilizers and biocontrol agents (11–14). For example, data mining identified genes
required for biological nitrogen fixation (nifB gene), secretion of extracellular enzymes
that contribute to colonization or antimicrobial activity, such as pectin lyase and diverse
proteases (e.g., serine proteases and metalloproteases), antimicrobial peptides (e.g.,
bacteriocin, which is reported to have broad-spectrum antimicrobial activity against R.
solani and P. capsici [15]), ribonucleases (potential anti-RNA virus activity), butanediol-
dehydrogenase-like (acetoin) production, and a wide variety of hydrolytic enzymes (in
particular, chitinases [anti-insect and antifungal]). These preliminary findings may help
to explain the success of Bacillus inoculants in agriculture.

Data availability. This whole-genome shotgun project has been deposited in

DDBJ/EMBL/GenBank under the accession number JAALLJ000000000. The version de-
scribed in this paper is the first version, JAALLJ010000000. Raw Illumina reads are
available under SRA accession number SRR11051678.
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