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In the past, there have been drought events in different parts of the world, which have
negatively influenced the productivity and production of various crops including wheat
(Triticum aestivum L.), one of the world’s three important cereal crops. Breeding new
high yielding drought-tolerant wheat varieties is a research priority specifically in regions
where climate change is predicted to result in more drought conditions. Commonly in
breeding for drought tolerance, grain yield is the basis for selection, but it is a complex,
late-stage trait, affected by many factors aside from drought. A strategy that evaluates
genotypes for physiological responses to drought at earlier growth stages may be more
targeted to drought and time efficient. Such an approach may be enabled by recent
advances in high-throughput phenotyping platforms (HTPPs). In addition, the success
of new genomic and molecular approaches rely on the quality of phenotypic data
which is utilized to dissect the genetics of complex traits such as drought tolerance.
Therefore, the first objective of this review is to describe the growth-stage based
physio-morphological traits that could be targeted by breeders to develop drought-
tolerant wheat genotypes. The second objective is to describe recent advances in
high throughput phenotyping of drought tolerance related physio-morphological traits
primarily under field conditions. We discuss how these strategies can be integrated
into a comprehensive breeding program to mitigate the impacts of climate change. The
review concludes that there is a need for comprehensive high throughput phenotyping
of physio-morphological traits that is growth stage-based to improve the efficiency of
breeding drought-tolerant wheat.

Keywords: drought tolerance, physiology, morphology, high throughput phenotyping, wheat, climate change,
traits, breeding

INTRODUCTION

Wheat (Triticum aestivum L.) is ranked second among cereal crops in terms of total global
production but ranked number one in terms of the total area under cultivation (FAO, 2018a;
OECD-FAO, 2018). The global annual production of wheat in 2017 was 757 million metric tons
(FAO, 2018a). Globally, wheat is responsible for 41% of total cereal calorie intake, broken down as
35 and 74% in developing and in developed countries, respectively (Shiferaw et al., 2013). Currently,
wheat ranks second after rice in terms of dietary intake volume, with 68% of the wheat produced
used for food, and approximately 19% for feed, and the rest for other purposes, including industrial
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biofuels (FAO, 2018b). Imports of wheat in developing countries,
including in the tropics where wheat is not grown, are increasing
(FAO, 2018b). For example, 2–3% increases in wheat demand
per year have been observed in Sub-Saharan Africa (CIMMYT,
2017). In particular, Sub-Saharan Africa imports wheat not
only because of rapid population growth but also due to
biotic and abiotic factors that constrain crop production, in
addition to climate change, changing food habits of local people
(Tadesse et al., 2018) and an inability of farmers to cope
with market fluctuations and price shocks for different crops
(Antonaci et al., 2014). Global hunger has increased in the past
3 years (FAO, 2018c), and the current data reveals that we
are not in a situation to eradicate hunger by 2030 as targeted
by sustainable development goals. The demand for wheat is
expected to increase by 60% to feed the human population
which is expected to surpass nine billion by 2050; to achieve
this, there is a need to accelerate global average wheat yield
increases from the current 1% per year to a minimum of
1.6% (GCARD, 2012).

Losses in wheat production are mainly due to abiotic factors
including drought, salinity, and heat stress rather than biotic
factors (Abhinandan et al., 2018). Unfortunately, recurrent
drought events have threatened global wheat production which
necessitates major attention. The effect of water stress differs
at different growth stages of wheat (Daryanto et al., 2016)
while the duration and intensity of water stress can affect the
development of wheat at different trait levels (Sarto et al.,
2017) which ultimately reduces grain yield. Various reports
from around the world indicate that limited water availability
plays a major role in reducing wheat yield. According to FAO
(2018c), global wheat production in 2018 was predicted to
decline by 2.7% which is based on predictions of changing
weather. A meta-analysis of 60 published studies showed
that drought reduced wheat yields by an average of 27.5%
(Zhang J. et al., 2018), and a similar study, which included
peer-reviewed articles from 1980 to 2015, showed decreases
of 20.6% (Daryanto et al., 2016). For example, in Australia,
wheat productivity has been severely affected by water stress
due to drought events among many other factors (Curtis
and Halford, 2014). Specifically, there were severe drought
events in Australia during 1982, 1994, 2002, 2004, and 2006,
which resulted in yield reductions of five major field crops
including wheat by 25–45% compared to the years with
optimum rainfall (Madadgar et al., 2017). In this region, the
average wheat yield at field sites was only around 0.8 t/ha
due to severe drought over the 2006 crop season (Fleury
et al., 2010). Between 2005 to 2007, Australian food prices
increased at twice the rate of the consumer price index, and
this increase was attributed to the drought events of 2004
and 2006 (Quiggin, 2007). Similarly, inconsistencies in winter
wheat production were observed during the 2011 to 2013
drought in Texas, United States: a yield reduction was observed
in 2011 and 2014 while the yield increased in 2012 (Ray
et al., 2018). Many African countries have also been prone to
drought events at different times of the year, including a 2009
drought in Kenya which reduced wheat production by 45%
(Rauf et al., 2016).

Different climate change studies have developed models
that predict changes in the frequency and intensity of
precipitation, increases in global temperatures, and a rise
in atmospheric CO2 concentrations (Rosenzweig and Parry,
1994; Mahato, 2014). Figure 1 shows the change in annual
precipitation over the last century. The trend from such
historical observations and future climate change models
indicates that some regions will receive more precipitation
while others will get drier (IPCC, 2013). In general, it
is expected that changes in the global climate will have
both spatial and temporal impacts on agricultural production
(Kulukulasuriya and Rosenthal, 2003).

Some of the major wheat growing areas (Figure 2) are
going to be profoundly affected by drought in the years to
come, specifically in South Eastern and South Western Australia,
parts of Western China, the Indo-Gangetic plains, the Middle-
East, Southern Europe, and Western Canada. A recent study
(Daryanto et al., 2016) analyzed wheat drought data from
144 studies around the world, published between 1980 and
2015, and showed that drought conditions caused a 20.6%
average decrease in wheat yield corresponding to a 40%
reduction in water availability at the global level. Similarly,
the Punjab and Haryana States in the Indo-Gangetic plain
experienced a prolonged duration of low wheat yield from
2002 to 2010, mainly attributed to depleted groundwater
resulting from an insufficient monsoon, poor surface water
irrigation and higher temperature (Figure 1; Mukherjee et al.,
2019). In China, a study using integrated climate assessment
models estimated a ∼55% yield loss in wheat yield due to
drought during 1955–2014 compared to a ∼7% yield loss
under the baseline irrigation scenario (Yu C. et al., 2018).
The same study also predicted that the yield loss rate will
double based on a current 100-year drought projection for
rain-fed environments. Combined, these examples suggest
that drought is going to be a critical yield limiting factor
for wheat in some wheat growing areas of the world in
the years to come.

There are a limited number of comprehensive studies
that quantify the impacts of drought on agriculture because
of the complex nature of drought and its complicated
association with other abiotic factors such as heat or the
soil profile type (Nicolas et al., 1984; Ali et al., 1999;
Eriyagama et al., 2009). Drought can be divided into three
broad inter-related groups: meteorological drought, caused
by anomalies in the atmosphere and higher temperatures;
agricultural drought, caused by low precipitation and high
evapotranspiration rates; and hydrological drought when
sources of water fall below their normal average (Dai, 2011).
Drought conditions may be defined as mild, moderate or
severe drought based on the duration and extent of water
availability. However, there is inconsistency in the use of
such classifications due to confounding factors such as the
soil type and the experimental environment (i.e., greenhouse
or field). For example, in a greenhouse experiment intended
to evaluate wheat seedling traits under water limitation,
Ahmed et al. (2019) defined optimal water as 100% field
capacity and stress as 50% field capacity. By contrast, in a
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FIGURE 1 | Global map showing the change in precipitation observed during two different time periods from 1901 to 2010 (left) and 1951 to 2010 (right). The
trends were calculated only for the grid boxes indicated on the maps which had >70% complete data records and more than 20% data availability for the first and
last 10% of the time period. Incomplete data sets are indicated by white areas while significant trends are indicated by a black plus sign (+). Source: IPCC, 2013.

field experiment involving rainout shelters, severe, moderate
and optimal water conditions for wheat were defined as
35–40%, 55–60%, and 75–80% field capacity, respectively
(Abid et al., 2018).

It is clear that drought negatively affects crop growth,
development, dry matter production, and potential yield (Zhang
et al., 2006; Anjum et al., 2011; Zhang J. et al., 2018). Grain yield
is the basis for selection in most breeding programs for drought
tolerance. However, grain yield is affected by many factors aside
from drought. From a molecular perspective, drought tolerance
is a very complex trait involving many drought-responsive
genes that differ in expression at different growth stages (Blum,
2011), each of which generally makes a minor contribution to
the trait (Sallam et al., 2019). Pyramiding their additive gene
action by crossing complementary drought tolerance traits from
different growth stages may achieve greater results than direct
selection on yield alone. Additionally, selection using earlier
proxy traits may be more time efficient than yield. In general,
as reviewed below, the extent to which drought impacts plant
growth and physiology largely depends upon the growth stage
at which it is exposed to drought and the plant species/genotype
(Kondo et al., 2004).

The first objective of this review is to describe growth-
stage based physio-morphological traits that can be targeted by
breeders to develop drought-tolerant wheat varieties. The second
objective is to describe advances in precision phenotyping of
drought tolerance related physio-morphological traits under field
conditions. Such phenotyping is required to reveal the genetic
basis of these traits which are complex and quantitative (i.e.,
many minor quantitative trait loci, QTLs) (Fleury et al., 2010;
Tuberosa and Maccaferri, 2015) as already noted.

FIGURE 2 | Major wheat growing areas around the world. Darker colors show
regions where more wheat is grown. Map based on You et al. (2014). (Source:
wheat.org).

There have been related reviews on these subjects.
In particular, Monneveux et al. (2012) highlighted the
methodological approach for the use of physiological traits
in breeding for drought tolerance in wheat, while Sallam
et al. (2019) reviewed a wide array of studies pertaining to
drought physiology in plants along with advances in wheat
breeding for drought tolerance. In this review, we focus
on more practical aspects of wheat breeding by focusing
on specific physio-morphological traits at different growth
stages that are affected by moisture stress. These stage-
specific traits may be potential targets for future selection.
This paper also highlights advances in phenotyping of
these traits and concludes with a comprehensive strategy
for breeding drought tolerant wheat by taking into account
these approaches.
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TARGETS FOR BREEDING
DROUGHT-TOLERANT WHEAT

Selection Environment
Considering the dynamic nature of abiotic stresses, the empirical
approach to breeding for drought tolerance emphasizes selection
under both optimal and stressed conditions to observe yield
stability and yield potential (Bruckner and Frohberg, 1987).
Plant breeders have been adopting replicated, multi-location,
and multi-year variety testing to identify varieties that perform
best across a wide range of environments as part of empirical
breeding based programs. If the objective is to breed a crop to
tolerate a specific stressful environment, then direct selection
under such an environment results in higher stability and
durability of the crop yield (Ceccarelli, 1987; Ceccarelli et al.,
1998). This observation was supported earlier by Johnson and
Frey (1967) who reported that varieties selected directly from
stressed conditions exhibit a low genotype × environment
(G × E) interaction compared to those selected under optimal
conditions. However, some studies show that selection under
optimal environments also improves grain yield under drought
conditions to a limited extent (Araus et al., 2002; Cattivelli
et al., 2008; Sserumaga et al., 2018). Mohammadi and Amri
(2011) indicate that grain yield improvement may be attained
by either selection in low input and stressed environments or
by selection in non-stressed conditions followed by selection
under stressed conditions. Practically, drought stress may not
occur every season. Therefore, the evaluation of traits only
under stressed conditions may limit the variety development
process by losing potential genetic materials that perform
better in a normal wheat-growing environment. Furthermore,
a variety that performs better under different environmental
conditions may be more stable in terms of grain yield across
different years and environments. Therefore, employing a
wide range of testing environments including both normal
and stressed could be more appropriate and efficient for the
development of high yielding, stable varieties adapted to drought-
prone environments.

Physio-Morphological Traits
Advances in precision phenotyping, along with combining
genetic and molecular approaches in the breeding process, are
expected to improve the efficiency of breeding programs (Mir
et al., 2012; Kosová et al., 2014; Choudhary et al., 2018).
In this scenario, indirect selection that targets the underlying
physiological traits that contribute to yield can be more efficient
than direct selection for higher yield (Reynolds et al., 2005;
Reynolds and Trethowan, 2007). The reason for this observation
is that traditional yield-based breeding relies on yield analysis
of tens of thousands of plants at the end of each breeding cycle
which in general masks the effect of the trait of interest on grain
yield. By contrast, the hope of physio-morphological trait-based
breeding is that early season and/or simple surrogate traits can
be identified for yield or yield attributing traits (Nigam et al.,
2005). This means that the measurement of yield attributing
physio-morphological traits independent of grain yield improves

the efficiency of selection by reducing the reliance on final grain
yield. This approach may increase the possibility of making
more successful crosses in a breeding program by exploiting
the potential for additive gene action (Reynolds et al., 2009a;
Ataei et al., 2017; Dolferus et al., 2019), as already noted
above. In addition, it is always an advantage if the physiological
trait considered for selection under a harsh environment has
heritability higher than yield itself, which confers a greater chance
for success for the development of a stress tolerant variety.

GROWTH STAGE BASED TARGETS

Increasing the efficiency of breeding drought-tolerant wheat
varieties by targeting physio-morphological traits requires a
thorough understanding of the impact of drought at different
growth stages. In general, while the intensity and frequency of
drought are extremely critical to the overall performance of the
crop, the phenological stage at which drought events occur is
equally important (Sarto et al., 2017). Wheat plants may be
more susceptible to drought at specific critical growth stages,
i.e., germination and seedling stages (Akram, 2011); tillering and
stem elongation stages (Saeidi et al., 2015; Wang et al., 2015;
Ding et al., 2018); and heading, anthesis and grain filling stages
(Akram, 2011; Sarto et al., 2017). The morphological traits that
contribute to final grain yield differ at each growth stage, and the
extent to which these are impacted by drought, determine the
seriousness of the stress event (Figure 3). Long term droughts
such as those starting from stem elongation through to maturity,
reduce yield more significantly compared to those starting at later
phases through to maturity (Shamsi and Kobraee, 2011).

Combined, these observations suggest the need to understand
the crop growth stages of wheat, the intensity of water stress at
any given growth stage, and also the timing and extent of drought
stress in a given target environment, to develop a drought-
tolerant variety for any specific environment. The following sub-
sections detail the effect of drought at different growth stages of
wheat as well as drought tolerance-related physio-morphological
traits critical to developing drought-tolerant wheat varieties.

It is important to note, however, that severe drought at any
phenological stage of wheat may potentially reduce the final grain
yield. For example, a study that explored drought tolerance of
ten wheat genotypes under different levels of stress treatments
showed that all the growth stages were influenced by limited
moisture availability (HongBo et al., 2005). More recently, Ihsan
et al. (2016) also observed that multiple growth stages, including
germination, tillering, booting, heading, anthesis, and maturity,
are negatively affected by drought stress, although the effect on
heading and grain filling stages was more severe.

It is important to note that in the literature (e.g., Table 1),
the severity of drought (mild or severe) that is reported can be
subjective, dependent on the authors of a particular study. For
example, Ding et al. (2018) defined treatments with 75, 60, and
40% soil moisture content as control, mild drought and severe
drought, respectively, while other studies have used different
thresholds (Table 1). It may be more useful to define drought
severity objectively, based on the quantitative frequency and
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FIGURE 3 | The figure shows different growth stages of wheat along with the associated visible growth events and traits related to drought tolerance. Also shown
are the components that contribute to final grain yield that are important during each growth stage. Adapted from Slafer and Rawson (1994). The line graph shows
the trend of moisture requirements at different growth stages.

duration of drought stress. In any case, prolonged mild, moderate
or severe stress will increasingly reduce final grain yield.

Germination and Seedling Stages
With respect to the impacts of drought at specific growth stages
in wheat, it is known that sufficient moisture in the soil, along
with optimum temperature, is required for uniform germination
and hence may be critical for drought-sensitive varieties (He
et al., 2017; Mukherjee et al., 2019). This is because germination-
related traits such as emergence index, emergence rate index,
the energy of emergence, and relative cell injury (RCI) vary
significantly among different wheat varieties under normal and
water-limited conditions (Ahmad et al., 2015). Increasing the
level of stress during the germination and early seedling phases
negatively affects traits such as germination rate, seedling vigor,
and lengths of coleoptile, shoot and/or root (Kızı lgeçi et al.,
2017). There are limited studies that quantify yield losses in wheat
due to drought at the germination and seedling stages. However,
a few studies have reported a positive association of seedling traits
with reproductive traits including grain yield (Kandic et al., 2009;
Dodig et al., 2015). These studies highlight the importance of
seedling drought tolerance to final plant performance.

Tillering and Stem Elongation Stages
After double ridge formation, spikelet initiation begins right at
the seedling stage and proceeds until the tillering stage, while
floret initiation starts at tillering and continues during the stem
elongation period. Thus, these growth stages are important for

maintaining the spikelet number per plant and spikes per plant
which directly contribute to grain yield. As a result, a severe
drought imposed during tillering and stem elongation in wheat
reduces the number of grains per spike and ultimately grain yield
(Blum et al., 1990; Saeidi et al., 2015; Ding et al., 2018; Table 1).
For example, Saeidi et al. (2015) observed a 54% reduction in
grain yield as a result of water stress at the vegetative stage
(stem elongation to flowering). In one study Ding et al. (2018)
observed that extreme water stress during the stem elongation
period reduced grain yield by up to 72%, which was greater than
the effect of extreme water stress during the reproductive period.
Similarly, in another study, the greatest decrease in grain yield
observed as a result of moisture stress was at the stem elongation
stage compared to booting and grain filling stages (Keyvan, 2010).
In addition to declines in stem growth and the number of effective
tillers, plant height is also reduced by drought at this stage (Blum
et al., 1990; Sarto et al., 2017), and overall plant biomass is also
negatively affected (Saeidi et al., 2015; Ding et al., 2018). This
results in changing source-sink relationships, resulting from an
increased fraction of available carbon being allocated to the root
system rather than to the shoot when plants are under limited
water supply (Palta and Gregory, 1997).

Contrary to the above observations, an improvement in
canopy structure and also maintenance of photosynthesis at the
canopy level was observed when mild water stress was applied
at stem elongation without a reduction in yield (Liu et al., 2016;
Table 1). It is sometimes argued that mild drought stress during
this phase may not be very critical to the final grain yield. One
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TABLE 1 | Examples of previous studies that measured wheat yield declines due to drought imposed at different growth stages.

Growth stages Stress
level§

Grain Yield
reduction

Notes Sourceˆ

Germination and seedling
stages

Moderate 7% • One variety
• Water withheld for 7 days at spikelet initiation stage (3 leaf stage)
• Rapid recovery after re-watering

Zhang et al., 2013

Tillering Severe
Moderate

6–16%
2–13%

• One drought tolerant and one drought susceptible variety: 6%
vs. 16% reduction (severe stress), 2% vs. 13% reduction
(moderate stress)

• Drought treatments were 10 days at 35–40% (severe) and
55–60% (moderate) vs. 75–80% (control) field capacity

• Drought tolerant variety had small yield reduction by maintaining
high photosynthetic rate during drought and had rapid recovery

Abid et al., 2018

Severe 52% • Yield averaged over 10 varieties
• Water withheld during tillering (duration not reported)
• Number of grains significantly reduced

Mehraban et al., 2019

Moderate 4–13% • Three local varieties
• Water withheld at up to 50% of the optimal gravimetric soil water

content (44.32 g H20/25 Kg dry soil)
• Recovery after re-watering

Maqbool et al., 2015

Stem elongation Severe
Mild

53%
0%

• One variety
• Relative soil moisture content at 40% (severe drought), 60%

(mild drought) and 75% (control)
• Decrease in spikes per plant and kernel weight
• Drought reduced kernel number, but compensated by increased

kernel weight for mild stress

Ding et al., 2018

Severe
Moderate

15–24%
5–11%

• One drought tolerant and one drought susceptible variety: 15%
vs. 24% reduction (severe stress), 5% vs. 11% reduction
(moderate stress)

• Drought treatments were 10 days at 35–40% (severe) and
55–60% (moderate) vs. 75–80% (control) field capacity

• Yield observations noted above

Abid et al., 2018

Severe 2–45% • Five varieties including 2 drought tolerant varieties
• Water withheld for 7–10 days: volumetric water content (v/v %)

3.5% (drought) vs. 20–25% (control).
• Reduced kernel number

Varga et al., 2015

Stem elongation to anthesis Severe 54% • Yield averaged across four varieties
• Treatments were 50% (drought) vs. 100% (control) field capacity
• Number of grains per spike

Saeidi et al., 2015

Severe
Moderate
Mild

11–3%
7–10%
0–4%

• One drought tolerant and one drought susceptible variety: 11%
vs. 13%, 7% vs. 10% 0% vs. 4% reductions for severe,
moderate and mild stress, respectively

• Drought treatments were 40–45% (severe), 55–60% (moderate),
65–70% (mild) vs. 75–80% (full irrigation) of field capacity

• Reduced canopy photosynthesis and translocation

Liu et al., 2016

Booting, heading and
anthesis

Severe 46–82% • Six varieties
• Grown at 100% field capacity then water withheld for 20 days

(drought) after booting and anthesis
• Reduction in kernel number

Khakwani et al., 2012

Severe 47% • Yield averaged across three varieties
• Water withheld after the onset of the growth stage (duration not

reported)
• Reduced kernel number and kernel weight

Shamsi et al., 2010

Heading Severe
Mild

38%
11%

• One variety
• Drought treatments were: relative soil moisture content

maintained at 40% (severe), 60% (mild) vs. 75% (control)
• Reduction in number of spikes per plants, kernel weight and

number

Ding et al., 2018

Severe 25-78% • Five varieties including 2 drought tolerant varieties
• Water withheld for 7–10 days: volumetric water content (v/v %)

3.5% (drought) vs. 20–25% (control).
• Reduced kernel weight and number

Varga et al., 2015

(Continued)
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TABLE 1 | Continued

Growth stages Stress
level§

Grain Yield
reduction

Notes Sourceˆ

Anthesis Severe 69% • Yield averaged across 4 synthetic hexaploids and 2 standard
checks

• Water withheld for 16 days
• Reduction in kernel number and grain weight

Pradhan et al., 2012

Moderate 11% • One variety
• Water withheld for 6 days just after heading
• Slight reduction in kernel number per spike

Zhang et al., 2013

Moderate 19–42% • Three local varieties
• Water withheld at up to 50% of the optimal gravimetric soil water

content (44.32 g H20/25 Kg dry soil)
• Reduced number of kernels per spike

Maqbool et al., 2015

Grain filling Severe 57% • Yield averaged across 5 varieties
• Drought reported as 40–45% of the natural water content vs.

60–70% for the control, starting 12 days after heading (duration
not reported)

• Significant reduction in kernel weight and number

Balla et al., 2011

Severe 24–87% • Five varieties including 2 drought tolerant varieties
• Water withheld for 7–10 days: volumetric water content (v/v %)

3.5% (drought) vs. 20–25% (control).
• Reduced kernel weight

Varga et al., 2015

Severe 15% • Yield averaged over 10 varieties
• Water withheld during grain filling (duration not reported)
• Reduced kernel weight

Mehraban et al., 2019

Severe 31% • Yield averaged across three varieties
• Water withheld after the onset of grain filling stage (duration not

reported)
• Reduced kernel weight

Shamsi et al., 2010

Severe 26% • Yield averaged across 4 synthetic hexaploids and 2 standard
checks

• Water withheld for 21 days after anthesis
• Kernel weight reduced

Pradhan et al., 2012

Severe 28.2% • Yield of one variety averaged over 2 years
• Drought imposed by rain-out shelter after anthesis until maturity;

control was rainfed (∼47 and 95 mm rainfall in 2 years)
• Reduction in kernel weight and number

Gevrek and Atasoy, 2012

Severe
Moderate
Mild

13–3%
7–12%
0–1%

• One drought tolerant and one drought susceptible variety: 13%
vs. 13%, 7–12%, 0–1% reductions for severe, moderate, and
mild stress, respectively

• Drought treatments were 40–45% (severe), 55–60% (moderate),
65–70% (mild) vs. 75–80% (full irrigation) of field capacity

• Reduced canopy photosynthesis and translocation

Liu et al., 2016

Moderate 24–48% • Three local varieties
• Water withheld at up to 50% of the optimal gravimetric soil water

content (44.32 g H20/25 Kg dry soil)
• Reduced kernel weight

Maqbool et al., 2015

§The criteria used to define the severity of drought stress was defined by each study and there is inconsistency in this definition between studies. ˆAll were
greenhouse/control environment trials except for Shamsi et al. (2010), Gevrek and Atasoy (2012), Liu et al. (2016), and Mehraban et al. (2019) which were under
field conditions.

possible explanation for these latter observations is that mild
drought stress during tillering and stem elongation stages primes
wheat plants to become acclimated to tolerate drought during
the grain filling period (Wang et al., 2015); the mechanism
involves low accumulation of hydrogen peroxide (H2O2) due to
increased activity of H2O2 scavenging enzymes such as ascorbate
peroxidase (APX) and guaiacol peroxidase (POX) (Khanna-
Chopra and Selote, 2007). Despite some reports (Wang et al.,
2015; Liu et al., 2016), the above evidence suggests that drought at
tillering and stem elongation stages negatively affects grain yield.

Therefore, the evaluation of genotypes for drought tolerance at
these growth stages is equally important as other growth stages.

Heading and Anthesis Stages
Many studies suggest that flowering and anthesis are the most
susceptible wheat growth stages to drought (e.g., Ji et al., 2010;
Fahad et al., 2017; Sarto et al., 2017). Water stress at heading
and anthesis stages causes multiple impacts, but amongst these,
a decrease in the number of grains per head and grain weight
was reported to be the most severe (Varga et al., 2015; Table 1).
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Drought at these stages reduces pollen viability leading to failures
in fertilization, and thus spikelet sterility (Ji et al., 2010; Su
et al., 2013). This is also the stage when there is maximum
evapotranspiration, which aggravates the situation and leads
to severe crop loss. On the other hand, in comparison to
severe drought, moderate stress at these stages may improve the
translocation of assimilates in some genotypes (Liu et al., 2016;
Ding et al., 2018) but this observation may be specific to only
a few genotypes.

Grain Filling Stage
It might be expected that drought during grain fill would be
extremely critical compared to earlier growth stages because
there is less opportunity for recovery compared to earlier
stages. However, various studies (Table 1 and noted below)
suggest that this stage is not more sensitive to drought,
suggestive of mitigation strategies. Indeed, at the grain filling
stage, though water availability becomes critical for translocating
photosynthates to the grain, pre-anthesis storage reserves such as
those in the stem can play vital roles in preventing yield loss, to
mitigate the negative impact of moisture stress on photosynthate
assimilation (Blum, 1998; Liu et al., 2016). One study showed
a 5.2% decrease in kernel weight and a 20.7% reduction in
kernel numbers as a result of drought imposed after anthesis
resulting in a ∼28% yield decline (Gevrek and Atasoy, 2012;
Table 1), indicating the severe impact of drought during the
grain filling period.

Furthermore, mild drought during the grain filling stage
does not appear to cause a significant reduction in final grain
yield (Ding et al., 2018). As noted above, moderate drought
during vegetative growth stages may prime plants to acclimate
to drought during grain fill; the mechanism involves reduced
photo-inhibition in the flag leaves at this later stage associated
with increased accumulation of abscisic acid (ABA) (Wang
et al., 2015). In addition, drought tolerance during grain fill
may be due to the accumulation of dehydrins (Lopez et al.,
2002), a family of hydrophilic, thermostable proteins produced
during dehydration that provide protection from a yet unknown
mechanism (Yu Z. et al., 2018).

PHENOTYPING ABOVE GROUND
PHYSIO-MORPHOLOGICAL TRAITS
ASSOCIATED WITH DROUGHT
TOLERANCE AT DIFFERENT GROWTH
STAGES

In the previous section, the impact of drought during
specific growth stages of wheat was described. For these
observations to be used in a breeding program, it is important
to identify phenotypic target traits for selection at each of
the growth stages. Phenotypic-based selection is already a
common practice in breeding for drought-tolerant wheat
varieties. To further improve the efficiency of breeding,
researchers have identified many more useful physio-
morphological traits that influence drought tolerance, and

these candidate traits for selection are summarized in Figure 4
and detailed below.

Germination and Seedling Growth
Stages
Coleoptile Length and Gibberellic Acid (GA3)
Sensitivity
The coleoptile of wheat is a pointed protective sheath, which
covers the emerging shoot or the first leaf during germination
(Farhad et al., 2014). When a seed germinates, the coleoptile
pushes through the soil and protects the young shoot. Coleoptile
length is measured from the scutellum to the tip of the
coleoptile sheath (Rebetzke et al., 2005) when the coleoptile is
completely visible, typically within 1–2 weeks after germination.
The length of the coleoptile varies among different genotypes,
and this has special importance to wheat cultivation in drought
environments. The concept of deep planting is more subjective
as the depth seeding may be defined based on the soil moisture
availability. Although coleoptile length may not be the sole
factor responsible for emergence after deep sowing (Mohan
et al., 2013), the frequency of emergence under these conditions,
when combined with the threat of surface desiccation, is greater
in genotypes with longer coleoptiles than those with shorter
coleoptiles (Rebetzke et al., 2005, 2007; Farhad et al., 2014). Poor
plant establishment can, therefore, result from shorter coleoptiles
under stressed conditions (Schillinger et al., 1998), especially in
dry environments. All of these studies establish that there is
potential to use coleoptile length as a surrogate trait to screen
drought-tolerant wheat varieties. However it is not appropriate
to select for coleoptile length solely based on its impact on
early-season drought tolerance. Nevertheless, the above evidence
suggest that it is a trait that carries potential while breeding wheat
for early-season drought tolerance.

It is noteworthy that the dwarfing genes in wheat have
important associations with coleoptile length. Specifically, over
the past few decades of modern wheat breeding, the dwarfing
genes Rht-B1b (Rht1) and Rht-D1b (Rht2) derived from “Norin-
10,” a Japanese wheat variety, have been widely used to
develop dwarf and semi-dwarf wheat varieties around the world
(Borojevic and Borojevic, 2005; Waddington et al., 2010). The
Rht1 and Rht2 genes made the plants insensitive to internal
gibberellic acid (Keyes et al., 1989) leading to shorter coleoptiles
and reduced plant height as a result of reduced cell elongation
(Rebetzke et al., 2001). There are other dwarfing genes apart from
Rht-B1 and Rht-D1 that are sensitive to endogenous gibberellins,
which reduce plant height but have less or no effect on coleoptile
length and leaf surface area (Rebetzke et al., 1999, 2005; Ellis et al.,
2005). The dwarfing gene Rht8, derived from the Japanese variety
“Aka Komugi” (Grover et al., 2018), allows for the development
of a long coleoptile (Rebetzke et al., 2005). The Rht8 gene has
been employed in commercial varieties in some Mediterranean
countries including Italy. According to Grover et al. (2018),
coleoptile length and plant height were reduced by only 6.75
and 2.84%, respectively, in the lines carrying the Rht8 gene
compared to 21.64 and 23.35% reductions in lines containing the
Rht1 gene.
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FIGURE 4 | Summary of physio-morphological traits associated with different growth stages and phenotyping methods in wheat.

Growing seeds on filter paper or germination paper under
dark conditions (Purchase et al., 1992) is a common practice
while the “cigar-roll method” (Bai et al., 2013) is another method
more into use. The coleoptile measurements are also taken after
growing seeds in soil media (Mohan et al., 2013). Measurement of
coleoptile length is commonly done manually when the seedlings
are 7–10 days old, and it is a time taking activity. Recently,
Zhang C. et al. (2018) analyzed coleoptile images using custom-
developed image processing algorithms which were significantly
correlated (r = 0.69–0.91, p < 0.0001) with manual measurement
of coleoptile length.

Seedling Vigor
Among phenotypic targets for selection, seedling vigor is
considered as a candidate trait for evaluating wheat for drought
tolerance at the early growth stage (Rebetzke et al., 1999;
Reynolds et al., 2005). The four-leaf stage is the appropriate
stage to study seedling vigor (Hafid et al., 1998). This trait is
characterized by the extent of ground cover and establishment,
and can be measured using a visual rating score (Mullan
and Garcia, 2012). Also, the use of digital imaging techniques
such as using an RGB camera is also a common way to
assess seedling vigor, though this requires technical skills to
process the images using different software programs. One of
the reasons why this is a promising trait is the large number
of genotypes that can be screened quickly and cost effectively
(Dhanda et al., 2004). Dodig et al. (2015) found a significant
association (r = 0.31, p ≤ 0.01) between a stress tolerance
index (STI) at the seedling stage and the STI associated with

grain yield in wheat. Furthermore, early seedling vigor has
been reported to have a positive correlation (r = 0.28–0.63,
p < 0.01) with grain yield (Kandic et al., 2009). Vigorous, healthy
seedlings are water and nutrient use efficient and can compete
against weeds (Zhang et al., 2014). A handful of scientists have
recently emphasized the use of seedling vigor as part of variety
selection: for example, Ahmad et al. (2015) evaluated 50 wheat
genotypes for different seedling traits including seedling vigor
and successfully identified eight potentially drought-tolerant
genotypes. Such evidence highlights the importance of this trait
in breeding wheat for drought tolerance. Recent studies (Zhang
C. et al., 2018; Walter et al., 2019) showed that digital imaging
using an RGB camera that recognizes color-based traits may be an
alternative to visual assessment which is more subjective. These
studies have highlighted that digital imaging may increase the
throughput rate and precision of measuring seedling traits. The
images can be analyzed by using open source software such as
ImageJ (Schillinger et al., 2010). Therefore, application of high
throughput imaging technologies can create opportunities to
more efficiently use this trait for screening in breeding programs.

Vegetative Growth to Post-anthesis
Growth Stages
Number of Tillers
Different studies have reported that drought reduces the number
of tillers (Maqbool et al., 2015; Abid et al., 2018). Since each
tiller has the potential to initiate a spike, then the tiller number
directly affects grain yield in wheat. Tiller initiation in wheat
is asynchronous, and the tillering stage encompasses newly
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initiating tillers as well as older tillers undergoing reproductive
transition. Therefore, the tillering stage determines both the tiller
number and also the development of reproductive primordia
(spike, spikelets, and florets) (Figure 3). Indeed, moisture stress
during this stage reduces tiller number which is compounded
by a reduction in the number of kernels per spike (Blum et al.,
1990). The extent to which moisture stress reduces tiller number
varies among genotypes depending on the intensity and duration
of stress (Sarto et al., 2017). The genotypes that maintain a higher
rate of photosynthesis and other physiological parameters such as
leaf water potential, and exhibit rapid recovery after re-supplying
moisture, promote drought tolerance at the tillering stage (Abid
et al., 2018). In many cases, the number of tillers may not be
reduced significantly if the moisture is supplied before the end
of the tillering stage, but in such cases, the tillers have a low
biomass and kernel weight (Blum et al., 1990). There are also
arguments that the number of tillers may not always be a good
indicator of yield in wheat. Duggan et al. (2000) showed that
under drought, vigorous tillers each with a high number of large
kernels were more important than the numbers of tillers per se in
terms of grain yield. Although many researchers do not measure
tiller number, it is an important trait that should be considered in
breeding for drought tolerance in wheat. This trait is commonly
scored at maturity by counting the number of tillers per unit area
in a representative part of each plot.

Chlorophyll Content
The green area of plant leaves specifies a plant’s photosynthetic
capacity and provides valuable information associated with crop
productivity, and the physiological and phenological status of the
plant (Kira et al., 2015; Ramya et al., 2016). Chlorophyll content
positively correlates with grain yield (Talebi, 2011; Kumari
et al., 2012). Abiotic stresses lead to changes in the amount of
chlorophyll content in plant leaves. Drought susceptible wheat
varieties showed losses in chlorophyll content, while tolerant
varieties exhibited higher chlorophyll content (Khayatnezhad
et al., 2011). Similarly, a 13–15% reduction in chlorophyll content
was observed in wheat varieties due to limited water supply
(Nikolaeva et al., 2010). This loss in chlorophyll content is
due to decreased expression of genes encoding enzymes for
chlorophyll biosynthesis (Liu et al., 2018). By contrast, the stay-
green trait in which chlorophyll persists, and which signifies the
delayed senescence of leaves, is another important indicator of
stress tolerance (Rosyara et al., 2009; Lopes et al., 2012) and
is discussed in more detail below. Talukder et al. (2014) state
that stress during anthesis results in a significant drop in flag
leaf chlorophyll content and yield-related traits such as grain
number, grain mass and duration of grain filling. Khayatnezhad
et al. (2011) observed that the durum wheat varieties that had a
significantly higher chlorophyll content during the reproductive
phase were higher yielding and more tolerant to end-season
drought. Other studies have also revealed that drought-tolerant
wheat genotypes maintain higher chlorophyll content during
water stress compared to drought susceptible varieties (Talebi,
2011; Bowne et al., 2012; Rehman et al., 2016; Ahmed et al.,
2019). All of these examples delineate that crop varieties with
higher chlorophyll content and slow chlorophyll degradation,

are potentially more drought-tolerant. Therefore, chlorophyll
content is an important trait that can be used as a proxy for
drought tolerance and higher grain yield, and it is a simple
trait to phenotype.

The Soil Plant Analysis and Development (SPAD) meter can
rapidly measure SPAD values as a proxy for chlorophyll content
(Rosyara et al., 2009; Lopes et al., 2012) and is widely used.
The SPAD meter has diodes that emit red and near infra-red
wavelengths that pass through the leaf; chlorophyll absorbance
is determined at 650 nm while non-chlorophyll absorbance is
calculated using a wavelength peaking at 940 nm (Lopes et al.,
2012). In wheat, SPAD measurements are taken from the flag
leaf when evaluating varieties for selection (Paul et al., 2016).
SPAD measurements can be taken starting at the emergence of
flag leaves until early senescence at a desired time interval (e.g., a
week or 10 days). This allows a breeder to assess the association
of chlorophyll content at different growth stages with other target
traits such as grain yield (Rosyara et al., 2009).

Normalized Difference Vegetative Index
The normalized difference vegetative index (NDVI) is a metric
for vegetation based on the difference between the reflection of
near-infrared light (which vegetation strongly reflects) and red
light (which vegetation strongly absorbs) (Sultana et al., 2014).
Values of NDVI range from −1 to +1, and are calculated using
the following formula:

NDVI =
RNIR − RR
RNIR − RR

Where:
NDVI = Normalized difference vegetative index;
RNIR = Near-infrared radiation;
RR = Visible red spectrum.

NDVI is extensively used as a trait to report the greenness
and ground cover of the vegetation, and therefore, to infer the
photosynthetic strength of the crop canopy, using measurements
taken from the ground level up to satellite altitudes (Pietragalla
and Vega, 2012). It is now widely accepted as a proxy for drought
adaptive traits (Lopes and Reynolds, 2012), having a positive
association with grain yield (Ramya et al., 2016; Condorelli et al.,
2018), and it has also shown potential for estimating growth rate,
seedling vigor and senescence patterns in wheat (Pietragalla and
Vega, 2012). For example, selection for yield parameters based
on NDVI along with other chlorophyll measurements resulted in
a yield increase by 17.1% in a half-sib population of bread wheat
(Ramya et al., 2016).

The GreenSeeker spectral sensor (Trimble, CA, United States)
is an NDVI tool that has been used to measure the greenness of a
plant and is commonly used to estimate the greenness of an entire
field plot. The use of GreenSeeker has been considered more
integrative than SPAD as it is mostly helpful in determining the
pattern of senescence from the whole crop canopy, while SPAD
uses only one leaf at a time to record the greenness. However,
GreenSeeker is unique as it only measures the reflectance of
the modulated red and NIR light that it provides, not the
ambient light. The accuracy of the measurement depends upon
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the number of NDVI measurements taken (Lopes et al., 2012).
Therefore, recording NDVI throughout the crop season at
defined intervals is essential to improve the accuracy of the
measurements taken and to evaluate the pattern of change in
greenness throughout the season. Although NDVI is a commonly
used index, its sensitivity to genetic and environmental diversity
has been criticized (Christopher et al., 2016). Therefore, caution
should be used when using NDVI to predict wheat grain yield
when a diverse genetic population is involved and when the
environmental conditions are highly variable. While NDVI can
be the first choice for many breeders, the use of other vegetative
indices such as Normalized Difference Red Edge (NDRE) may be
another option. The performance of NDRE is better compared
to NDVI, overcoming the limitations of NDVI associated with
absorptance by the upper canopy and saturation at its maximum
value during later growth stages of the crop (Fu et al., 2020).

Chlorophyll Fluorescence
Chlorophyll fluorescence measurements can be used to non-
destructively determine a wide variety of leaf-level parameters
related to the functional status of Photosystem II (PSII),
the first protein complex in the light-dependent reactions of
photosynthesis. For example, in illuminated leaves, chlorophyll
fluorometry can be used to calculate the rate of photosynthetic
electron transport through PSII (Genty et al., 1989; Earl and
Tollenaar, 1998), or to quantify the activity of non-photochemical
quenching processes associated with the safe dissipation of excess
light energy (Laisk et al., 1997).

More commonly, chlorophyll fluorescence is measured on
dark-adapted leaves (e.g., pre-dawn, or after placing plants in
darkness for a defined period, generally 30 min to a few hours).
Dark-adapted measurements provide estimates of maximum
efficiency of PSII, which can be reduced due to damage or
down-regulation occurring in response to prior stress (Lu et al.,
2003; Baker, 2008). Because PSII efficiency is so sensitive to
any stress affecting photosynthesis, evaluation of chlorophyll
fluorescence can be used as a quick indicator in any crop
(Jansen et al., 2014). The parameters of chlorophyll fluorescence
measured on dark-adapted leaves, namely the initial fluorescence
(F0; the signal when all functional PSII centers are “open”),
maximum fluorescence (FM; the signal when all PSII centers
are “closed” by a brief pulse of saturating light), variable
fluorescence (FV = FM – F0) and efficiency potential (FV/FM)
are affected by unfavorable environmental factors like drought
(Zhang et al., 2010; Sharma et al., 2014a). Under drought
conditions, F0 may increase or decrease, while FM, FV and
FV/FM all decrease. These parameters of chlorophyll fluorescence
kinetics (PCFKs) and imaging are considered as very powerful
and reliable indicators of the impact of various abiotic stresses,
including drought, on plant physiological processes (Paknejad
et al., 2007; Khayatnezhad et al., 2011; Jansen et al., 2014;
Sharma et al., 2014b). Under drought conditions, crop varieties
that maintain high FV/FM under water-limited conditions are
considered to be stress tolerant (Zlatev, 2009), and indicate
efficient protection of PSII activity. Chlorophyll fluorescence
has been used in a diversity of plant species including wheat
(Zlatev, 2009; Khayatnezhad et al., 2011; Rahbarian et al., 2011;

Kamanga et al., 2018; Yao et al., 2018). Similarly, analysis of
PCFKs in winter wheat seedlings indicated that the variety that
maintained FV/FM was tolerant to water stress, able to maintain
high photosynthetic activity (Zlatev, 2009). Despite the potential
usefulness of PCFKs in drought tolerance studies, there are some
limitations associated with the measurement of these parameters.
In particular, the high-throughput measurement of PCFKs is
mostly useful during the seedling stage and can be a difficult task
later in development (Furbank and Tester, 2011). Another issue is
that these parameters may have limited applicability to breeding
programs if the population size is very large, although emerging
high throughput phenotyping technologies may overcome this
challenge. The best application of PCFKs in breeding may be at
the advanced breeding stages where the number of genotypes
may not be a limiting factor.

Shoot Waxiness
Cuticle, the outermost layer of the plant shoot, is made up of
cutin and waxes. The amount of wax present on the leaves differs
among species and genotypes within a species. Waxiness, also
known as glaucousness, is a shoot morphological trait that is vital
from the perspective of environmental stress tolerance (Bi et al.,
2017). In wheat breeding, waxiness is used to select drought-
tolerant genotypes. The composition of the wax and the changes
in wax composition influence water loss from the cuticular
surface, leading to drought tolerance, though it is not the sole
indicator (Jäger et al., 2014; Bi et al., 2017). In a study consisting
of three wheat varieties, Bowne et al. (2012) reported that the
variety with the most waxiness yielded the highest under both
mild and severe drought conditions, supporting that waxiness
reduces the loss of water from plant surfaces. Waxiness is usually
quantified visually based on the proportion of visible bluish-white
colored wax on the plant shoot surface including spikes when
phenotyping in the field. A 0–10 visual rating scale is commonly
used, where 0 indicates no or low waxiness, and 10 indicates high
waxiness (Torres and Pietragalla, 2012). Qualitatively, analyses
of cuticular waxes have shown that genotypes with higher
β-diketones, one of the two major components of wax along with
alkanes, are more drought-tolerant (Bi et al., 2016, 2017). More
recently, it has been shown that considerable changes occur in
the composition of carbonyl ester in cuticular wax of wheat leaves
when exposed to water stress suggesting the possibility of having
a new biochemical marker for drought tolerance (Willick et al.,
2018). Considering its influence on drought tolerance, and given
that it is easy to score visually, waxiness is a valuable trait to
include when breeding wheat for drought tolerance.

Carbon Isotope Discrimination
Water use efficiency (WUE), known as transpiration efficiency,
is the ratio of above ground (aerial) biomass yield (carbon) to
the total amount of water used by a plant (Condon et al., 1992;
Rebetzke et al., 2002). Direct measurement of WUE is very
complicated and also time exhausting. Therefore, utilization of
carbon isotope discrimination (1), which is a proxy for the ratio
of intercellular (Ci) and the atmospheric (Ca) partial pressure of
CO2, i.e., Ci/Ca, has been exploited as an indirect measurement
of WUE (Farquhar et al., 1982, 1989; Ehdaie et al., 1991). CO2
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exists in the atmosphere mostly as 12CO2, but also as the rarer,
heavier isotope 13CO2. During CO2 fixation, plants discriminate
between these two isotopes, favoring 12C since 12CO2 diffuses
more freely into leaves than does the heavier isotope, and
also because RuBisCO fixes 12CO2 more readily than 13CO2.
However, the magnitude of discrimination (and therefore the
measurable 13C/12C ratio in the final crop biomass) varies
depending on the type of crop, genotype, environment and
other factors (Kumar and Singh, 2009). If Ci was in perfect
equilibrium with Ca, then discrimination against 13C would be
constant. However, because stomatal conductance is not infinite,
photosynthesis reduces leaf internal CO2 (i.e., Ci/Ca < 1), and
the air inside the leaf becomes more depleted in 12C relative to
13C, which reduces the opportunity for further discrimination
in favor of 12C. Thus, plants that have had lower Ci over
their lifetimes will have higher 13C/12C in their final biomass.
Since lower Ci is associated with higher WUE (Farquhar et al.,
1982), carbon isotope discrimination serves as a time-integrated
proxy for WUE. Consistent with this well-established theory,
1 has been shown experimentally to be negatively associated
with WUE (Ehdaie et al., 1991; Medrano et al., 2015). The 1
metric has been used to assess WUE and its association with
grain yield in many different crops including wheat (Austin
et al., 1990; Blum, 2005; Akhter et al., 2008; Kumar and Singh,
2009; Luckett et al., 2011). Interestingly, 1 has high heritability
(the narrow-sense heritability is ∼0.63) under limited water
conditions (Rebetzke et al., 2002, 2006), and thus, it is a potential
indirect method to select high yielding wheat varieties for dry
environments (Rebetzke et al., 2006). To determine 1, finely
ground dried shoot tissue is analyzed using an isotope ratio
mass spectrometer (Optima, VG Instruments, United Kingdom)
(Becker and Schmidhalter, 2017; Bachiri et al., 2018). It has
been assessed using the flag leaf in durum wheat under drought
conditions by Merah and Monneveux (2001) and in Triticale by
Munjonji et al. (2016). The throughput rate for determination
of 1 may not be high but it is a reliable trait to assess drought
tolerance in wheat. The trait may be best evaluated when the
wheat breeding lines are at an advanced stage.

Leaf Rolling
When plants are under limited water conditions, turgor pressure
adjustment in the cells is one of the biochemical mechanisms
that helps plants acclimate to dry conditions (Price, 2002; Fang
and Xiong, 2015). Leaf rolling is one of the consequences of
turgor pressure adjustment observed in diverse plants when they
are exposed to limited water environments (Kadioglu and Terzi,
2007; Fleury et al., 2010). During the stress period, leaf rolling
reduces the leaf area, which in turn reduces the effective area
for evapotranspiration (Fang and Xiong, 2015; Lamaoui et al.,
2018) and hence represents a drought acclimation response.
In wheat, like other cereals, leaf rolling is a typical symptom
when there is water deficit in the soil (Clarke, 1986; Kadioglu
et al., 2012). Since leaf rolling is associated with water loss in
cultivated wheat, it is a potential proxy trait for screening wheat
genotypes up to a certain level of water loss from the leaves
(Condorelli et al., 2018). Although the heritability of leaf rolling
was found to be high (narrow-sense heritability ∼0.83), Sirault

et al. (2008) suggest further investigation to exploit the usefulness
of this trait for breeding. In wheat, leaf rolling can be easily
scored visually in the field using qualitative scales (Torres and
Pietragalla, 2012; Condorelli et al., 2018) at the vegetative and
reproductive growth stages. Despite leaf rolling not being widely
used, it has the potential to improve the efficiency of breeding for
drought tolerance in wheat.

Canopy Temperature
Canopy temperature (CT) is a physiological trait that indicates
crop water status (Mason and Singh, 2014) and is an established
proxy trait for stomatal conductance (Deery et al., 2019). CT
has the potential to be a very useful tool for indirect selection
of tolerant genotypes for heat and drought stress tolerance
(Reynolds et al., 2009b). In such environments, genotypes that
maintain cooler canopies are more likely to thrive. It has been
observed that in deep-rooted genotypes, CT is usually lower, as
the crop can extract moisture from a deeper soil depth (Lopes
et al., 2012). The CT is affected by various confounding factors
such as solar radiation, soil moisture, wind speed, temperature,
and relative humidity (Reynolds et al., 2012; Mason and Singh,
2014), and hence caution should be used when interpreting CT
data. CT can be measured from post-tillering to physiological
maturity using an infrared thermometer (Pask and Reynolds,
2013), thermal imaging (Costa et al., 2013), and ArduCrop
wireless infrared thermometers (Rebetzke et al., 2016b; Deery
et al., 2019). Since the frequency of drought and heat stress are
expected to increase in the near future, the development of wheat
genotypes with cooler canopies should be one of the targets of a
wheat breeding program.

Days to Heading and Anthesis
According to Singh (1981), there are three very critical
phenological stages in wheat, based on the soil moisture
requirement: the early vegetative stage, booting to the heading
stage, and the flowering and grain filling stage. Many studies
suggest that plants are more sensitive to water limitation from
heading to flowering than the other stages (Nezhadahmadi et al.,
2013; Farooq et al., 2014; Sarto et al., 2017). Evapotranspiration
reaches a maximum at this growth phase (Sarto et al., 2017).
Therefore, maintenance of optimum soil moisture at this interval
is critical to ensure higher wheat yield and yield stability (Senapati
et al., 2019). Drought at heading has been found to affect spike
weight negatively (Ding et al., 2018). Similarly, in winter wheat,
Varga et al. (2015) reported that water stress during the heading
period, or the growth stages after heading, resulted in a higher
yield penalty. Drought at the onset of flowering results in sterility
and a reduced number of grains per spike, which is primarily due
to reduced pollen viability and ovule abortion as a consequence
of limited moisture (Su et al., 2013). With respect to genetic
variation in this trait, in a study that evaluated the response
to drought during the reproductive stage, Senapati et al. (2019)
observed a 13.4% higher mean yield in drought-tolerant wheat
genotypes compared to susceptible genotypes across 13 major
wheat growing regions of Europe. One additional study showed
that early heading and anthesis can be escape mechanisms
for terminal drought (Shavrukov et al., 2017), perhaps more
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applicable to geographic regions that suffer from late-season
water deficit. Phenotyping a genotypically diverse set of plants at
heading and anthesis stages is time-consuming, requiring daily
visits to a field site, because of the corresponding diversity in
flowering times. Recently, an automated phenotyping method
for these stages has been tested in wheat, involving computer
software analyzing digital images; the method has achieved a
>85% accuracy for both stages (Sadeghi-Tehran et al., 2017).
Based on its reproducibility and cost effectiveness, such a method
has potential for adoption in wheat breeding programs.

Flag Leaf Senescence
It is proposed that a delay in flag leaf senescence greatly influences
grain yield in cereal crops (Thomas and Howarth, 2000; Borrill
et al., 2015). In wheat, early flag leaf senescence has been found
to affect grain yield negatively (Gregersen et al., 2013) including
under dryland conditions (Liang et al., 2018), while delayed flag
leaf senescence is positively associated with higher grain yield
(Verma et al., 2004) and harvest index (Carmo-Silva et al., 2017).
Drought-tolerant varieties have a higher CO2 uptake rate in the
flag leaves which contributes to yield stability (Paul et al., 2016).
During the senescence phase, protein complexes in chloroplasts
including PSII, break down which leads to changes in the
structure, metabolism and gene expression of photosynthetic
cells, ultimately resulting in loss of cellular chlorophyll content
(Thomas and Howarth, 2000; Podzimska-Sroka et al., 2015).
Therefore, to maintain translocation of assimilates from leaves
and stems to the grain and maintain grain yield, genotypes
with delayed leaf senescence are preferred (Hafsi et al., 2013).
Delayed senescence and persistence of greenness were introduced
above as the stay-green trait and are associated with altered
cytokinin and ethylene activities (Thomas and Ougham, 2014).
This evidence implies that delayed flag leaf senescence can be a
key parameter for selecting genotypes in areas with end season
drought stress (Campos et al., 2004). Flag leaf senescence can
be recorded visually by using qualitative leaf color scores (Pask
and Pietragalla, 2012). There are some studies with wheat which
reveal that the contribution of ear photosynthesis to grain yield is
relatively greater than that of the flag leaf in optimal and drought
environments (Abbad et al., 2004; Bragado et al., 2010; Yun-qi
et al., 2016). Nonetheless, the significance of delayed flag leaf
senescence for drought tolerance should not be underestimated.
Since flag leaf senescence is easy to record and has close
association with chlorophyll decline, the trait can be targeted in
wheat breeding programs for drought tolerance. Confounding
effects may be observed, however, when the genotypes under
study are extremely diverse with respect to days to maturity.

Grain Filling Rate and Duration
In cereals, the grain filling period is one of the most sensitive
growth stages to water stress (Barnabás et al., 2008; Alghabari
and Ihsan, 2018) and commonly affects many wheat growing
regions of the world including semi-arid regions (Saeidi and
Abdoli, 2015). Grain yield loss depends on the severity of the
stress during this interval (Farooq et al., 2014; Tabassam et al.,
2014; Saeidi and Abdoli, 2015). This loss in grain yield could be
due to a reduction in the duration of grain filling (Alghabari and

Ihsan, 2018) which is associated with early senescence (Farooq
et al., 2014; Bogale and Tesfaye, 2016). Monpara (2011) stated
that the grain filling period is positively correlated (r = 0.51,
p < 0.05) with grain yield in wheat, which was confirmed under
water-limited condition (Kilic and Yagbasanlar, 2010; Bogale and
Tesfaye, 2016). Ihsan et al. (2016) observed that a drought-
tolerant wheat genotype had a 38% longer grain filling period
compared to a drought susceptible genotype. Other researchers
such as Nass and Reiser (1975) and Borrill et al. (2015) argue
that the rate of grain filling or grain filling capacity is more
critical than the grain filling duration. Madani et al. (2010) and
Baillot et al. (2018) showed that the rate of translocation of
photosynthates to the grain contributes to grain weight and is
a major component of grain yield in wheat, which supports the
statement that grain filling rate is more fundamental to grain
yield than grain filling duration. There is also an argument that
stressed plants may have a higher rate of grain filling, and this,
combined with a shorter grain filling period, cause improper
assimilate translocation which ultimately leads to reduced grain
yield (Ihsan et al., 2016; Alghabari and Ihsan, 2018). Therefore, it
may be useful to screen genotypes that have a longer interval from
anthesis to grain maturity and/or a higher rate of grain biomass
increase in a time course. Selection for a higher rate of grain
biomass increase may be more useful than delayed grain maturity
in climates where short duration wheat varieties are grown.

Awn Length
Wheat genotypes vary for having spikes with no awns to those
with differing awn lengths. Awn length is measured from the tip
of the spike to the tip of the longest awn but can also be scored
qualitatively (Torres and Pietragalla, 2012). A significant positive
association was observed between awn length and grain yield,
and between awn length and spike length, under water deficit
conditions (Blum, 2005; Taheri et al., 2011; Khamssi and Najaphy,
2012; Ali et al., 2015). A significant correlation (r = 0.43, p≤ 0.01)
between awn length with drought stress tolerance index was also
observed (Taheri et al., 2011). Similarly, it was observed that awns
maintained a higher relative water content and photosynthetic
electron transport rate compared to the flag leaf under drought,
indicating tolerance to soil moisture deficit (Maydup et al., 2014).
Awns are green and contribute to the photosynthetic area, and
positively influence grain yield (Rebetzke et al., 2016a). Maydup
et al. (2010) reported that the contribution to grain yield by spike
photosynthesis was up to 42% while the contribution was even
greater in varieties having longer awns. The results from another
study (Towfiq and Noori, 2016) showed that the awns increased
the photosynthetic spike surface area by 36–59% and increased
grain yield by 10–16%. Morphologically, moisture stress causes a
significant reduction in awn dry weight but not length (Khamssi
and Najaphy, 2012). This result may be related to awns competing
for assimilates during ovary growth, and represents another
issue that requires further investigation. Furthermore, awns are
associated with larger but fewer grains, which is another topic
that needs to be further investigated (Rebetzke et al., 2016a).
Integrating the information discussed above (Taheri et al., 2011;
Ali et al., 2015) and its high to moderate level of heritability
(broad-sense heritability ∼0.95) (Bhatta et al., 2018), awn length
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is an interesting trait to consider for assessment of wheat
genotypes for drought tolerance. Awn length is measured from
the tip of the spike to the tip of the longest awn after physiological
maturity (Torres and Pietragalla, 2012).

Plant Height
Plant height is one of the critical traits affected by drought
in wheat. Low moisture reduces photosynthesis and
metabolite/nutrient translocation in wheat, especially during
the stem elongation stage, resulting in reduced height (Sarto
et al., 2017). The reduction in plant height is due to altered
carbon partitioning as the plants undergo osmotic adjustment
under moisture stress (Blum and Sullivan, 1997). The proportion
of reduction in plant height depends on both the intensity of
drought and the genotype. Reductions in wheat plant height of
2–24% and 1–16%, respectively, due to drought stress applied at
30 and 70% field capacity during the stem elongation stage, have
been reported (Qadir et al., 2016). Similarly, in another study
(Mirbahar et al., 2009), a ∼25% reduction in wheat plant height
was observed due to drought. The drought tolerant plants tend to
maintain shorter plant height and plant area index to reduce the
moisture demand and prevent moisture loss due to transpiration
(Su et al., 2019). Therefore, proportionally, the growth reduction
observed in smaller plants is less than larger plants indicating
that smaller plants are less sensitive to moisture stress (Blum
and Sullivan, 1997). With respect to this concept, selection for
a higher root to shoot ratio appears to be a more appropriate
strategy for drought-prone environments (e.g., Ahmed et al.,
2019). Plant height in wheat is commonly measured manually
using a ruler after maturity. However, sensor-based tools have
been recently tested in other crops for the measurement of
plant canopy height (Andrade-Sanchez et al., 2014) which can be
transferred to wheat breeding programs to reduce time and labor.

PHENOTYPING ROOT ARCHITECTURAL
TRAITS

Aside from the above-ground traits described above, root
system architecture (RSA) also plays a vital role in the growth,
development and overall productivity of crop plants (Wasaya
et al., 2018). In general, RSA of a plant largely depends upon
the environment within which it grows and the types of abiotic
stresses associated with soil and water that it experiences (Wang
and Frei, 2011). When water is the major constraint, then root
characters have an equally important role as shoot traits in
promoting drought tolerance (Manavalan et al., 2010). Some of
the important root traits, such as root angle, primary root length
(Comas et al., 2013; Forde, 2014), the number of lateral roots
(Zhan and Lynch, 2015), and average root diameter (Comas et al.,
2013; Haling et al., 2013), contribute to regulating water uptake
which is critical under drought stress. It is stated that plants with
root systems having a smaller root diameter and long fine roots
are more suited to drought environments.

In wheat, the RSA consists of two different types of roots, the
early initiating seminal roots, sometimes regarded as embryonic
roots, and the later nodal roots, commonly known as a crown

or adventitious roots (Manske and Vlek, 2002; Kirby, 2002). The
wheat embryo develops ∼6 root primordia: during germination,
the primary root and 4–5 seminal roots emerge out of the
coleorhiza which ultimately develops into the seminal root
system (Perry and Belford, 2000; Kirby, 2002). The later nodal
roots, which emerge at the nodes, develop as tillering progresses
(Kirby, 2002; Manske and Vlek, 2002). The seminal roots can
grow up to 2 m deep into the soil, while the nodal roots are
thicker and scavenge from the upper surface of the soil in a more
horizontal orientation, to the middle layers (Kirby, 2002). Both
seminal and nodal roots branch to form lateral roots.

Similar to other crops, root traits are also associated with
drought tolerance in wheat (Lopes and Reynolds, 2010). Root
angle is a trait that explains some mechanisms related to soil-
root interactions (Chen et al., 2017, 2018). The seminal and
nodal roots of genotypes with a narrow root angle tend to
grow deeper compared to those with a wider root angle at the
early growth stages (Manschadi et al., 2008; Wasson et al., 2012;
Richard et al., 2015). Similarly, a high density of lateral roots at
a narrow angle (steeper) are considered better for wheat since
such roots have more access to soil moisture at a deeper soil
depth (Manschadi et al., 2008; Wasson et al., 2012; Chen et al.,
2017, 2018). Root angle in wheat shows high heritability (broad-
sense heritability ∼0.82), and thus, it is an important trait to
consider when breeding wheat for drought tolerance (Hassouni
et al., 2018). Although evidence suggests that root angle is a
vital trait especially for end season drought tolerance in wheat
(Gesimba et al., 2004), it is important to note that wheat root
systems that have a high number of nodal and seminal roots in
the crown region located close to the surface of the soil are more
drought-tolerant at the early growth stages.

The limited number of studies on RSA morphology is
primarily due to a lack of efficient high throughput phenotyping
methods. Conventional methods of root study include excavation
of roots from the field which is labor intensive and time-
consuming; such methods are mostly limited to phenotyping
young roots under controlled conditions. For example, Goron
et al. (2015) established a growth system consisting of fertigation
of coarse Turface clay, rather than fine sand or soil which
damages roots upon excavation, to phenotype root hairs in wheat,
millet, and maize. The study demonstrated that this approach
could be an alternative method to characterize finer root traits
like root hair number and length. However, as stated above,
this method requires considerable time, human and financial
resources, which limits its application in plant breeding. Some
low-cost and simplified high throughput phenotyping methods
have been developed recently. Richard et al. (2015) used two
different methods, the clear pot method, and the transparent
growth pouch method, to study wheat seedling RSA using
two proxy traits, root angle and the number of seminal roots
associated with root surface area. In the clear pot method, the
pots are transparent, and seeds are sown at the edge of the pots
to permit RSA observation; the pots are placed in dark pots to
prevent light exposure. Hassouni et al. (2018) also used the clear
pot method to study the seminal roots of durum wheat. The use of
root digital imaging techniques has also facilitated RSA studies in
recent years. Platforms that are capable of automatic washing of
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the roots are available, as well as machines that can scan the root
samples and different software that can analyze the root scanned
images (Lobet et al., 2011). Digital imaging of root traits (DIRT)
(Bucksch et al., 2014) is an example of such methods, which is
useful in characterizing the roots of both dicot and monocot
crop species. The use of WinRhizo Tron MF software (Regent
Instrument Inc., Quebec, Canada) is another method that has
been used to analyze seedling root traits. Tomar et al. (2016) used
WinRhizo software to study wheat seedling root traits targeting
drought tolerance which included root length, surface area of
root, and root volume.

Recently other rapid methods have been developed such as
X-ray tomography that provide 3-D images of root systems,
which shows significant potential for studying RSA without
disturbing the root system (Wasaya et al., 2018). Furthermore,
structural root models are also coming into use to analyze RSA
traits while model generated images are used to improve the
precision of root trait estimation (Lobet et al., 2017). Studies of
root foraging, the process by which RSA adapts to changes in the
environment, is also another area that is gaining attention (Tian
and Doerner, 2013; Chen et al., 2018).

In general, phenotyping mature roots is much more complex
and demands more labor than juvenile roots, which limits
selection strategies. Selection based on phenotyping seedling
roots in a controlled environment may be unreliable, as the
traits may not translate into mature RSA under field conditions
(Wasson et al., 2012) and hence should be evaluated on a
case by case basis (Comas et al., 2013). A method for nodal
root phenotyping often referred to as “shovelomics” (Trachsel
et al., 2011), where roots are excavated from the soil as already
noted above, is in wide use for field phenotyping of root
systems, including wheat (Kadioglu and Terzi, 2007). Thus,
despite the above mentioned advancements in root phenotyping,
the challenge that persists is the lack of cost-effective, high
resolution, efficient, simple, and reproducible high-throughput
methods that can be readily employed in plant breeding programs
(Chen et al., 2018).

IMPROVING THE EFFICIENCY OF
PHENOTYPING
PHYSIO-MORPHOLOGICAL TRAITS

To make use of a wide range of physio-morphological traits
of interest while selecting drought-tolerant wheat varieties,
numerous drought screening methods have been developed and
tested for use in crop breeding programs (Siddig et al., 2013;
Gómez-Luciano et al., 2014; Zu et al., 2017). In the following
sections, we review some of the advancements that have been
made to improve phenotyping.

Application of Controlled Physical
Structures
One of the greatest challenges in breeding crops for drought
tolerance is the simulation of drought at a larger scale.
Conducting drought experiments in open field conditions

requires a long-term data set as there is a large variation
in precipitation and soil moisture conditions (Kant et al.,
2017). Additional environmental factors like light intensity,
temperature, and canopy cover are also critical in open field
experiments, but these factors are highly variable temporally and
spatially. Therefore, multi-season, multi-treatment experiments,
which enable the understanding of the complex nature of
drought, are required (Hoover et al., 2018). Physical structures
that overcome the unpredictability of weather while attempting
to mimic actual field environments have already shown great
potential in drought studies. For example, rainout/rainwater
shelters, which are structures established in the field to protect
against rainfall, can be used to conduct controlled water
experiments over a short span of time (Yahdjian and Sala, 2002;
Trillo and Fernández, 2005; Mwadzingeni et al., 2016; Kundel
et al., 2018). Rainwater shelters have been successfully tested
in different crops including wheat (Zu et al., 2017; Kundel
et al., 2018; Wimmerová et al., 2018). Rainwater shelters can
be mobile (Wimmerová et al., 2018) or geographically fixed
(Kundel et al., 2018) and either manual, semi-automated or
fully automated (Ries and Zachmeier, 1985). Custom-designed,
automated and portable shelters are very efficient for stress
tolerance phenotyping (Kant et al., 2017). For improving the
precision of these shelters, it is important that they are equipped
with standard soil moisture sensors, motion cameras, and other
tools which essentially add value to precise data recording
(Mwadzingeni et al., 2016; Kant et al., 2017). One technical issue
is that rainwater shelters exclude solar radiation (Wimmerová
et al., 2018). Therefore, Vogel et al. (2013) suggested the use
of control treatments to assess any confounding effects of these
closed structures. The use of these artificial structures for drought
tolerance studies is still scrutinized as they do not entirely
reflect the real field environment, and very high investments are
required to maintain and manage these structures. Despite these
limitations, rainout shelters continue to hold promise in efforts to
breed for drought tolerance in wheat. This method appears to be
the best option available for the study of drought tolerance under
field conditions.

High-Throughput Phenotyping Platforms
(HTPPs)
With recent advances in genomics, efficient phenotyping has
become limiting (Salas Fernandez et al., 2017). Although
it has been common practice to conduct high throughput
phenotyping under environmentally controlled conditions
(greenhouses, growth rooms, and growth chambers) using single
plant measurements, translation of the quantitative trait loci
(QTLs) identified under such conditions to the final field-level
performance of the crop has been low (White et al., 2012). Since
the actual field environment is highly heterogeneous, canopy
level phenotypic measurements are considered more accurate.
In such a situation, utilization of HTPPs are needed that are
precise, labor-, and cost-effective, to phenotype complex physio-
morphological traits associated with biotic and abiotic stresses
(Rutkoski et al., 2016) as they bridge the gap between genomics
and phenomics (Araus and Cairns, 2014; Fahlgren et al., 2015;
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Bai et al., 2016; Zhang et al., 2017). Innovations in remote
sensing, aeronautics and computing have largely contributed
to the development of several phenotyping platforms including
both ground-based and aerial systems (White et al., 2012; Araus
and Cairns, 2014). However, highly sophisticated HTPPs with
fully automated functions for canopy level studies are available
only in a limited but growing number of institutions such as the
United States Department of Agriculture (USDA), the Australian
Plant Phenomics Facility and European Plant Phenotyping
Network (Araus and Cairns, 2014). Thus, the current situation
at many institutions demands judicious selection and proper
use of HTPPs that are easily accessible (Cobb et al., 2013;
Junker et al., 2015). Management of the high-volume of data
generated by these HTPPs also presents a challenge in analysis
and interpretation (Shi et al., 2016; Singh et al., 2016; Coppens
et al., 2017). In the following two sections, we discuss two high
throughput phenotyping approaches that have been gaining
attention recently.

Proximal High-Throughput Phenotyping Platforms
The use of proximal or ground-level sensors to permit
measurements of plant traits at the canopy level has shown
potential in terms of replacing current labor-intensive
methods. The proximal sensing and imaging approach
includes three basic techniques: visible/near-infrared (VIS-
NIR) spectroradiometry, infrared thermometry and thermal
imaging including conventional digital photography (Araus
and Cairns, 2014). These platforms are usually handheld or
mounted on vehicles (Qiu et al., 2018). Bai et al. (2016) tested
a manually operated multi-sensor system capable of carrying
many sensors to measure more than one trait in a wheat breeding
program. A strong correlation was observed between grain yield
and early and late growth stage sensor-based traits, indicating
the significance of using proximal sensing in plant breeding.
Similarly, measurement of the vegetative index, NDVI, using a
handheld GreenSeeker and a passive bi-directional reflectance
sensor, showed similar results in wheat, suggesting that these
indices can be used for selection even during early breeding
cycles (Walsh et al., 2013; Barmeier and Schmidhalter, 2016). An
infrared thermometer has been used to measure CT in wheat
(Lopes and Reynolds, 2010), which is very helpful in drought
and heat stress studies. Conventional digital cameras have also
been used to estimate green biomass, canopy soil cover and
plant color (Casadesus et al., 2007; Araus and Cairns, 2014).
Some digital cameras with charge-coupled device (CCD) silicon
sensors, capable of detecting not only color but also the texture
of the objects, are useful in interpreting vegetative indices as
well (Qiu et al., 2018). For example, Casadesus et al. (2007)
observed a high correlation between vegetation indices from
the pictures taken by the digital camera and grain yield in
wheat under drought conditions. Comar et al. (2012) developed
and successfully tested a semi-automatic system to study the
dynamics of change in vegetation index, based on the green
fraction (GF), which calculates the fraction of green area per
ground area for wheat cultivars grown in micro-plots under
field conditions. This system has a hyperspectral radiometer
and two RGB cameras that are used to observe the canopy

from approximately 1.5 m from the top of the canopy, and it is
supported by a tractor that is driven across the plots to collect
data from individual plot canopies.

Field-based phenotyping platforms used with other crops
may also hold potential for wheat. For example, Andrade-
Sanchez et al. (2014) mounted three sensors on a vehicle to
measure canopy height, temperature, and reflectance of cotton
(Gossypium barbadense L.) varieties grown under irrigated and
water-limited conditions. Significant differences were observed
among the varieties for the traits recorded by the sensors,
indicating the reproducibility of the method. Very recently,
Phenobot 1.0, a field-based HTPP, equipped with an auto-steered
and self-propelled system, has been developed and tested for
crops such as sorghum, which have tall and dense canopies
(Salas Fernandez et al., 2017). Phenobot 1.0 has RGB cameras
that are used to take measurements of plant height and stem
diameter very efficiently. The challenge now is to increase the
global accessibility of these new technologies.

Remote Sensing for High Throughput Phenotyping
Low-cost unmanned aerial vehicles (UAVs) or drones are
remote sensing technologies for high throughput phenotyping
(HTP) which have already demonstrated significant potential for
precision agriculture as they can be used to quantify crop health,
and effects of soil moisture and nutrients on crop growth and
development (Holman et al., 2016; Khan et al., 2018). These
UAVs are capable of providing high resolution images of small
experimental plots from distances as high as 30–100 m above
ground (Shi et al., 2016; Tattaris et al., 2016). In wheat, aerial
measurements of secondary traits such as CT and NDVI, have
been successfully used to improve the precision of genomic
prediction models for grain yield (Rutkoski et al., 2016). A highly
significant association (r = 0.76, p < 0.05) was observed between
vegetative indices extracted from an unmanned aerial system
with the ground-truthing data recorded by a spectroradiometer
applied to advanced wheat breeding lines (Haghighattalab et al.,
2016). Similarly, Tattaris et al. (2016) observed that CT and
NDVI measurements in wheat recorded by UAVs were better
correlated with yield and biomass compared to the data recorded
by proximal measurement under both irrigated and water-limited
conditions. Khan et al. (2018) also observed a close association
between vegetative indices from aerial images with RGB images
in a wheat breeding program. Furthermore, optimized UAVs
have been tested in crop growth rate studies. Apart from this,
UAVs have been used to assess the growth rate of winter wheat
as a response to different rates of fertilizer application (Holman
et al., 2016). Very recently, integration of Light Detection And
Range (LiDAR), a powerful tool which can acquire precise 3D
measurements for crop phenotyping and remote sensing (Madec
et al., 2017), has been successfully used in wheat phenotyping
studies (Madec et al., 2017; Jimenez-Berni et al., 2018). In China,
Crop 3D, an HTP tool developed to integrate LiDAR and UAV,
is capable of measuring many plant traits such as plant height,
leaf width, leaf length, leaf angle, and leaf area (Guo et al.,
2018). Development of improved drought monitoring systems
such as the remote sensing drought monitoring system (RSDMS)
can have a significant impact on future agricultural research
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as it was devised based on a model that permits flexibility
and increased coverage (Dong et al., 2017). The use of satellite
data can also be used to prepare hazard maps that display
the distribution of drought risk across a specific region and is
being explored for its application to drought tolerance research
in crops (Skakun et al., 2016). The pace and progress of new
remote sensing technologies potentially offer improvements in
selection efficiency, but challenges remain such as poor access
to these technologies (e.g., cost) and the need to manage large
volumes of data.

CONCLUSION AND FUTURE
PERSPECTIVES

In this paper, we have presented evidence-based information
related to the negative impacts of drought stress on the
productivity of wheat, in the past few decades. Drought affects
the physiology of wheat plants resulting in reduced grain
yield. The paper highlights the importance of the selection
environment for developing high yielding, stable wheat varieties
for drought-prone regions. Furthermore, the indirect selection of
physiological traits contributing to grain yield shows tremendous
potential in terms of improving the efficiency of breeding for
drought resilience. Drought may prevail at any growth stage, and
the intensity and type of drought can vary for different wheat
growing regions. Therefore, here we emphasized the benefits of
phenotyping growth stage-based physio- morphological traits.
We have also reported the availability of different HTPPs that are
capable of measuring these traits.

As we have demonstrated, in many wheat growing
environments, the development of drought-tolerant wheat

varieties is going to be critical to address the growing food
demand. A major challenge associated with the use of
physiological traits in plant breeding is that such traits are
sensitive to environmental variation (Zarei et al., 2013; Kosová
et al., 2014). As this review has highlighted, a multidisciplinary
physio-morphological approach is a very promising way forward
to enable breeding of wheat varieties for drought-stressed
environments (Ortiz et al., 2008). To achieve this goal, a
comprehensive effort is needed to establish more efficient
platforms for phenotypic selection as described in the sections
above, combined with biochemical and marker-assisted and
genomic selection. These strategies need to be integrated into a
well-organized and comprehensive breeding program (Figure 5)
to accelerate the development of new high yielding drought-
tolerant wheat varieties. As indicated in Figure 5, utilization of
appropriate existing genetic resources, advanced phenotypic and
genomic approaches and robust data handling tools potentially
improve the efficiency of a breeding program, resulting in a
higher genetic gain. To create a breeding program that is capable
of generating high yielding and adaptive varieties, smart planning
from the beginning is crucial. For example, adopting a “few
cross” strategy or smart crossing (Witcombe et al., 2005) could be
beneficial; this strategy includes careful selection of parents as per
the breeding target and allows opportunities for higher genetic
gain. The approach also stresses the benefits of phenotyping
physiological traits associated with drought tolerance and testing
of breeding materials in diverse environments including under
controlled conditions. Dissecting the growth stages further into
sub-stages may further improve the genetic gain. As a part of
the strategy in Figure 5, data management is also a major part
of a breeding program. Newly available open-source software
programs have been developed for the benefit of biological

FIGURE 5 | A proposed comprehensive strategy for breeding wheat for drought tolerance.
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research including plant breeding databases such as BrAPI (Selby
et al., 2019) and Planteome (Cooper et al., 2018). These programs
represent the programming interface for plant breeding and
the integrated ontology resource, respectively. The integration
of such platforms can improve the adeptness of a breeding
program further. The target of the breeding strategy discussed
here is to improve the genetic gain while also generating and
maintaining new diversity created in the breeding program.
In summary, Figure 5 presents an all-inclusive approach for
breeding drought tolerant wheat.

Genomic tools such as genome-wide association studies
(GWAS), used to identify QTLs associated with physio-
morphological traits, benefit substantially from improved
phenotypic data. Further adoption of novel molecular
technologies such as genome editing (Wang et al., 2018) may
open new avenues with respect to breeding for drought tolerance.
For example, to enable the development of stress tolerant
varieties, Zafar et al. (2020) proposed targeting of regulatory
and structural genes responsible for stress tolerance in plants
using the CRISPR/Cas9 system. But as has been emphasized,
the success of molecular and genomic technologies lies in the
quality and quantity of phenotypic data available. In other words,
the significance of phenomics is ever increasing. Therefore,
more efficient, cost-effective, simple, viable and straightforward
platforms for phenotyping morphological, physiological, and
phenological traits, and those that reduce the impacts of
environmental variation, can have a significant impact on
drought tolerance research in wheat.

One challenge that is mounting is the massive volume of data
that is generated from high throughput phenotyping (Araus et al.,
2018; Yang et al., 2020). This observation highlights the need for
platforms to handle the data generated to facilitate the sustained
adoption of these techniques. The Minimum Information About
a Plant Phenotyping Experiment (MIAPPE) is an example of
such platforms that helps in data standardization to promote
standard data management practices (Bolger et al., 2019).
Similarly, the Consultative Group for International Agricultural
Research (CGIAR) centers developed Crop Ontology, a platform
to promote proper use of genotypic and phenotypic data
through data annotation (Shrestha et al., 2012). However, greater
investments are needed to develop tools as well as expertise
in bioinformatics for data management and processing along

with technologies that offer secure storage of large volumes of
data. Training of experts in phenomics, genomics, and data
management is as important as technical advancements in these
disciplines (Yang et al., 2020). Finally, successful breeding for
drought-tolerant wheat varieties will be made possible through
collaborations between different institutions or communities
across academia, public research institutions, industry, and
CGIAR centers. The Heat and Drought Wheat Improvement
Consortium (HeDWIC) coordinated by the International Maize
and Wheat Improvement Center (CIMMYT), is a great example
of a network that includes a wide range of partners and aims
to develop climate-resilient wheat varieties. The over 40 year
long China-CIMMYT partnership is a notable example of
collaboration that has been highly successful in improving wheat
(He et al., 2019). However, any such partnerships can only be
sustained through long term investments in human resources and
visionary project initiatives.
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